Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 559
1.
Immunol Lett ; 267: 106865, 2024 May 03.
Article En | MEDLINE | ID: mdl-38705483

PURPOSE: To investigate the relationship between the lipid profiles of patients with primary Sjögren's syndrome (pSS) and other clinical characteristics, laboratory examination, disease activity, and inflammatory factors. In addition, the risk factors for hyperlipidemia-related complications of pSS and the effect of hydroxychloroquine (HCQ) usage on the lipid profile were incorporated into this study. METHODS: This is a single-center, retrospective study that included 367 patients who were diagnosed with pSS at Tongji Hospital, School of Medicine, Tongji University, China from January 2010 to March 2022. Initially, demographic information, clinical characteristics, medication records, and complications of the patients were gathered. A case-control analysis compared the 12 systems involvement (ESSDAI domain), clinical symptoms, and laboratory tests between pSS patients with and without dyslipidemia. A simple linear regression model was employed to investigate the relationship between serum lipid profile and inflammatory factors. Logistics regression analysis was performed to assess variables for hyperlipidemia-related complications of pSS. The paired t-test was then used to evaluate the improvement in lipid profile among pSS patients. RESULTS: 48.7 % of all pSS patients had dyslipidemia, and alterations in lipid levels were related to gender, age, and smoking status but not body mass index (BMI). Dyslipidemia is more prevalent in pSS patients who exhibit heightened autoimmunity and elevated levels of inflammation. Higher concentrations of multiple highly inflammatory factors correlate with a more severe form of dyslipidemia. Non-traditional cardiovascular risk factors may contribute to hyperlipidemia-related complications of pSS, such as increased, low complement 3 (C3) and low C4. According to our study, HCQ usage may protect against lipid-related disease in pSS. CONCLUSION: Attention should be paid to the dyslipidemia of pSS. This research aims to clarify the population portrait of pSS patients with abnormal lipid profiles and provides insights into the correlation between metabolism and inflammation in individuals with pSS and the potential role they play in the advancement of the disease. These findings provide novel avenues for further understanding the underlying mechanisms of pSS pathogenesis.

2.
Antiviral Res ; 226: 105898, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38692413

SARS-CoV-2 continues to threaten human health, antibody therapy is one way to control the infection. Because new SARS-CoV-2 mutations are constantly emerging, there is an urgent need to develop broadly neutralizing antibodies to block the viral entry into host cells. VNAR from sharks is the smallest natural antigen binding domain, with the advantages of small size, flexible paratopes, good stability, and low manufacturing cost. Here, we used recombinant SARS-CoV-2 Spike-RBD to immunize sharks and constructed a VNAR phage display library. VNAR R1C2, selected from the library, efficiently binds to the RBD domain and blocks the infection of ACE2-positive cells by pseudovirus. Next, homologous bivalent VNARs were constructed through the tandem fusion of two R1C2 units, which enhanced both the affinity and neutralizing activity of R1C2. R1C2 was predicted to bind to a relatively conserved region within the RBD. By introducing mutations at four key binding sites within the CDR3 and HV2 regions of R1C2, the affinity and neutralizing activity of R1C2 were significantly improved. Furthermore, R1C2 also exhibits an effective capacity of binding to the Omicron variants (BA.2 and XBB.1). Together, these results suggest that R1C2 could serve as a valuable candidate for preventing and treating SARS-CoV-2 infections.

3.
Neuropeptides ; 105: 102428, 2024 Jun.
Article En | MEDLINE | ID: mdl-38583362

RNA methylation can epigenetically regulate learning and memory. However, it is unclear whether RNA methylation plays a critical role in the pathophysiology of Vascular dementia (VD). Here, we report that expression of the fat mass and obesity associated gene (FTO), an RNA demethylase, is downregulated in the hippocampus in models of VD. Through prediction and dual-luciferase reporters validation studies, we observed that miRNA-711 was upregulated after VD and could bind to the 3'-untranslated region of FTO mRNA and regulate its expression in vitro. Methylated RNA immunoprecipitation (MeRIP)-qPCR assay and functional study confirmed that Syn1 was an important target gene of FTO. This suggests that FTO is an important regulator of Syn1. FTO upregulation by inhibition of miR-711 in the hippocampus relieves synaptic association protein and synapse deterioration in vivo, whereas FTO downregulation by miR-711 agomir in the hippocampus leads to aggravate the synapse deterioration. FTO upregulation by inhibition of miR-711 relieves cognitive impairment of rats VD model, whereas FTO downregulation by miR-711 deteriorate cognitive impairment. Our findings suggest that FTO is a regulator of a mechanism underlying RNA methylation associated with spatial cognitive dysfunction after chronic cerebral hypoperfusion.


Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Cognitive Dysfunction , Hippocampus , MicroRNAs , Rats, Sprague-Dawley , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Animals , Male , MicroRNAs/metabolism , MicroRNAs/genetics , Hippocampus/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Rats , Methylation , Dementia, Vascular/metabolism , Dementia, Vascular/genetics , Disease Models, Animal , RNA Methylation
4.
Int J Biol Macromol ; 267(Pt 1): 131407, 2024 May.
Article En | MEDLINE | ID: mdl-38582463

Succinate dehydrogenase (SDH) is an important inner mitochondrial membrane-bound enzyme involved in redox reactions during the tricarboxylic acid cycle. Therefore, a series of novel chitosan derivatives were designed and synthesized as potential microbicides targeting SDH and precisely characterized by FTIR, 1H NMR and SEM. Their antifungal and antibacterial activities were evaluated against Botrytis cinerea, Fusarium graminearum, Staphylococcus aureus and Escherichia coli. The bioassays revealed that these chitosan derivatives exerted significant antifungal effects, with four of the compounds achieving 100 % inhibition of Fusarium graminearum merely at a concentration of 0.5 mg/mL. Additionally, CSGDCH showed 79.34 % inhibition of Botrytis cinerea at a concentration of 0.1 mg/mL. In vitro antibacterial tests revealed that CSGDCH and CSGDBH have excellent Staphylococcus aureus and Escherichia coli inhibition with MICs of 0.0156 mg/mL and 0.03125 mg/mL, respectively. Molecular docking studies have been carried out to explore the binding energy and binding mode of chitosan and chitosan derivatives with SDH. The analyses indicated that chitosan derivatives targeted the active site of the SDH protein more precisely, disrupting its normal function and ultimately repressing the growth of microbial cells. Furthermore, the chitosan derivatives were also evaluated biologically for antioxidation, and all of these compounds had a greater degree of reducing power, superoxide radical, hydroxyl radical and DPPH-radical scavenging activity than chitosan. This research has the potential for the development of agricultural antimicrobial agents.


Antioxidants , Chitosan , Enzyme Inhibitors , Molecular Docking Simulation , Schiff Bases , Succinate Dehydrogenase , Chitosan/chemistry , Chitosan/pharmacology , Succinate Dehydrogenase/antagonists & inhibitors , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/chemistry , Schiff Bases/chemistry , Schiff Bases/pharmacology , Schiff Bases/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Glycine/chemistry , Glycine/analogs & derivatives , Glycine/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/chemical synthesis , Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Escherichia coli/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Fusarium/drug effects , Botrytis/drug effects , Chemistry Techniques, Synthetic
5.
Cell Rep Med ; 5(4): 101506, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38593808

Prostate cancer (PCa) is a common malignancy in males. The pathology review of PCa is crucial for clinical decision-making, but traditional pathology review is labor intensive and subjective to some extent. Digital pathology and whole-slide imaging enable the application of artificial intelligence (AI) in pathology. This review highlights the success of AI in detecting and grading PCa, predicting patient outcomes, and identifying molecular subtypes. We propose that AI-based methods could collaborate with pathologists to reduce workload and assist clinicians in formulating treatment recommendations. We also introduce the general process and challenges in developing AI pathology models for PCa. Importantly, we summarize publicly available datasets and open-source codes to facilitate the utilization of existing data and the comparison of the performance of different models to improve future studies.


Artificial Intelligence , Prostatic Neoplasms , Male , Humans , Clinical Decision-Making
6.
Article En | MEDLINE | ID: mdl-38669309

Porous carbons have shown their potential in sodium-ion batteries (SIBs), but the undesirable initial Coulombic efficiency (ICE) and rate capability hinder their practical application. Herein, learning from nature, we report an efficient method for fabricating a carbon framework (CK) with delicate porous structural regulation by biomimetic mineralization-assisted self-activation. The abundant pores and defects of the CK anode can improve the ICE and rate performance of SIBs in ether-based electrolytes, whereas they are confined in carbonate ester-based electrolytes. Notably, ether-based electrolytes enable CK anode to possess excellent ICE (82.9%) and high-rate capability (111.2 mAh g-1 at 50 A g-1). Even after 5500 cycles at a large current density of 10 A g-1, the capacity retention can still be maintained at 73.1%. More importantly, the full cell consisting of the CK anode and Na3V2(PO4)3 cathode delivers a high energy density of 204.4 Wh kg-1, with a power density of 2828.2 W kg-1. Such outstanding performance of the CK anode is attributed to (1) hierarchical pores, oxygen doping, and defects that pave the way for the transportation and storage of Na+, further enhancing ICE; (2) a high-proportion NaF-based solid-electrolyte-interphase (SEI) layer that facilitates Na+ storage kinetics in ether-based electrolytes; and (3) ether-based electrolytes that determine Na+ storage kinetics further to dominate the performance of SIBs. These results provide compelling evidence for the promising potential of our synthetic strategy in the development of carbon-based materials and ether-based electrolytes for electrochemical energy storage.

7.
J Med Virol ; 96(4): e29590, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619024

Our study investigates the molecular link between COVID-19 and Alzheimer's disease (AD). We aim to elucidate the mechanisms by which COVID-19 may influence the onset or progression of AD. Using bioinformatic tools, we analyzed gene expression datasets from the Gene Expression Omnibus (GEO) database, including GSE147507, GSE12685, and GSE26927. Intersection analysis was utilized to identify common differentially expressed genes (CDEGs) and their shared biological pathways. Consensus clustering was conducted to group AD patients based on gene expression, followed by an analysis of the immune microenvironment and variations in shared pathway activities between clusters. Additionally, we identified transcription factor-binding sites shared by CDEGs and genes in the common pathway. The activity of the pathway and the expression levels of the CDEGs were validated using GSE164805 and GSE48350 datasets. Six CDEGs (MAL2, NECAB1, SH3GL2, EPB41L3, MEF2C, and NRGN) were identified, along with a downregulated pathway, the endocannabinoid (ECS) signaling pathway, common to both AD and COVID-19. These CDEGs showed a significant correlation with ECS activity (p < 0.05) and immune functions. The ECS pathway was enriched in healthy individuals' brains and downregulated in AD patients. Validation using GSE164805 and GSE48350 datasets confirmed the differential expression of these genes in COVID-19 and AD tissues. Our findings reveal a potential pathogenetic link between COVID-19 and AD, mediated by CDEGs and the ECS pathway. However, further research and multicenter evidence are needed to translate these findings into clinical applications.


Alzheimer Disease , COVID-19 , Humans , Alzheimer Disease/genetics , Brain , Cluster Analysis , COVID-19/genetics , Endocannabinoids , Microfilament Proteins , Myelin and Lymphocyte-Associated Proteolipid Proteins
8.
aBIOTECH ; 5(1): 94-106, 2024 Mar.
Article En | MEDLINE | ID: mdl-38576435

Genomic data serve as an invaluable resource for unraveling the intricacies of the higher plant systems, including the constituent elements within and among species. Through various efforts in genomic data archiving, integrative analysis and value-added curation, the National Genomics Data Center (NGDC), which is a part of the China National Center for Bioinformation (CNCB), has successfully established and currently maintains a vast amount of database resources. This dedicated initiative of the NGDC facilitates a data-rich ecosystem that greatly strengthens and supports genomic research efforts. Here, we present a comprehensive overview of central repositories dedicated to archiving, presenting, and sharing plant omics data, introduce knowledgebases focused on variants or gene-based functional insights, highlight species-specific multiple omics database resources, and briefly review the online application tools. We intend that this review can be used as a guide map for plant researchers wishing to select effective data resources from the NGDC for their specific areas of study. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00134-4.

9.
Case Rep Ophthalmol Med ; 2024: 5519361, 2024.
Article En | MEDLINE | ID: mdl-38566845

Background: Here, we report a case of a male patient with bilateral focal choroidal excavation (FCE) and central serous chorioretinopathy (CSC). A 33-year-old man complained of mild blurring of vision in the right eye. Optical coherence tomography (OCT) revealed FCE in both eyes, with subretinal fluid in both eyes and serous pigment epithelial detachment in the right eye. Standard laser fluence (50 J/cm2) was used in the right eye, and a subthreshold micropulse laser (SML) was simultaneously used in the left eye. Follow-up visits were recommended. At his last visit (5 months after treatment), the visual acuity was 16/20 in the right eye and 20/20 in the left eye and OCT showed a completed resolution of SRF. Conclusion: FCE is defined as a localized depression of the choroid detected by OCT. It may be congenital or acquired secondarily. We present a case of uncommon focal choroidal excavation and central serous chorioretinopathy (CSC) coexisting in both eyes at a relatively young age in which visual acuity was improved and subretinal fluid (SRF) completely resolved with laser treatment. Timely treatment can promote SRF absorption and improve vision.

11.
J Urol ; 211(5): 648-655, 2024 May.
Article En | MEDLINE | ID: mdl-38591703

PURPOSE: Benefits of docetaxel-based neoadjuvant chemohormonal therapy (NCHT) before radical prostatectomy (RP) remain largely unknown. We explored whether docetaxel-based NCHT would bring pathological benefits and improve biochemical progression-free survival (bPFS) over neoadjuvant hormonal therapy (NHT) in locally advanced prostate cancer. MATERIALS AND METHODS: A randomized trial was designed recruiting 141 locally advanced, high-risk prostate cancer patients who were randomly assigned at the ratio of 2:1 to the NCHT group (75 mg/m2 body surface area every 3 weeks plus androgen deprivation therapy for 6 cycles) and the NHT group (androgen deprivation therapy for 24 weeks). The primary end point was 3-year bPFS. Secondary end points were pathological response including pathological downstaging and minimal residual disease rates. RESULTS: The NCHT group showed significant benefits in 3-year bPFS compared to the NHT group (29% vs 9.5%, P = .002). At a median follow-up of 53 months, the NCHT group achieved a significantly longer median bPFS time than the NHT group (17 months vs 14 months). No significant differences were found between the 2 groups in pathological downstaging and minimal residual disease rates. CONCLUSIONS: NCHT plus RP achieved significant bPFS benefits when compared with NHT plus RP in high-risk, locally advanced prostate cancer. A larger cohort with longer follow-up duration is essential in further investigation.


Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/surgery , Docetaxel , Neoadjuvant Therapy , Androgen Antagonists/therapeutic use , Prospective Studies , Androgens , Neoplasm, Residual/surgery , Prostatectomy , Prostate-Specific Antigen
12.
Chem Commun (Camb) ; 60(26): 3567-3570, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38465654

We propose a facile coreduction method to synthesize a platinum-group-metal quaternary alloy anchored on nitrogen-doped hollow carbon spheres (PtPdRuIr/HCS) by using [MClx]y--1-butyl-3-methylimidazole (M = Pt, Pd, Ru, and Ir) ionic liquid. Owing to the steric hindrance of the imidazolium cations, Pt-group metal atoms of different sizes can be deposited at approximately the same pace for the growth of an alloy with lattice defects. The lattice-distorted PtPdRuIr/HCS exhibits enhanced activity toward oxygen electroreduction when benchmarked against Pt counterparts.

13.
Front Immunol ; 15: 1289492, 2024.
Article En | MEDLINE | ID: mdl-38510251

Sjögren's syndrome (SjS) is a systemic, highly diverse, and chronic autoimmune disease with a significant global prevalence. It is a complex condition that requires careful management and monitoring. Recent research indicates that epigenetic mechanisms contribute to the pathophysiology of SjS by modulating gene expression and genome stability. DNA methylation, a form of epigenetic modification, is the fundamental mechanism that modifies the expression of various genes by modifying the transcriptional availability of regulatory regions within the genome. In general, adding a methyl group to DNA is linked with the inhibition of genes because it changes the chromatin structure. DNA methylation changes the fate of multiple immune cells, such as it leads to the transition of naïve lymphocytes to effector lymphocytes. A lack of central epigenetic enzymes frequently results in abnormal immune activation. Alterations in epigenetic modifications within immune cells or salivary gland epithelial cells are frequently detected during the pathogenesis of SjS, representing a robust association with autoimmune responses. The analysis of genome methylation is a beneficial tool for establishing connections between epigenetic changes within different cell types and their association with SjS. In various studies related to SjS, most differentially methylated regions are in the human leukocyte antigen (HLA) locus. Notably, the demethylation of various sites in the genome is often observed in SjS patients. The most strongly linked differentially methylated regions in SjS patients are found within genes regulated by type I interferon. This demethylation process is partly related to B-cell infiltration and disease progression. In addition, DNA demethylation of the runt-related transcription factor (RUNX1) gene, lymphotoxin-α (LTA), and myxovirus resistance protein A (MxA) is associated with SjS. It may assist the early diagnosis of SjS by serving as a potential biomarker. Therefore, this review offers a detailed insight into the function of DNA methylation in SjS and helps researchers to identify potential biomarkers in diagnosis, prognosis, and therapeutic targets.


Autoimmune Diseases , Sjogren's Syndrome , Humans , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation
14.
Nat Hum Behav ; 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38499771

Molecules-the elementary units of substances-are commonly considered the units of processing in olfactory perception, giving rise to undifferentiated odour objects invariant to environmental variations. By selectively perturbing the processing of chemical substructures with adaptation ('the psychologist's microelectrode') in a series of psychophysical and neuroimaging experiments (458 participants), we show that two perceptually distinct odorants sharing part of their structural features become significantly less discernible following adaptation to a third odorant containing their non-shared structural features, in manners independent of olfactory intensity, valence, quality or general olfactory adaptation. The effect is accompanied by reorganizations of ensemble activity patterns in the posterior piriform cortex that parallel subjective odour quality changes, in addition to substructure-based neural adaptations in the anterior piriform cortex and amygdala. Central representations of odour quality and the perceptual outcome thus embed submolecular structural information and are malleable by recent olfactory encounters.

15.
Angew Chem Int Ed Engl ; : e202403898, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38497553

Addressing the dual enhancement of circular polarization (glum) and luminescence quantum yield (QY) in circularly polarized luminescence (CPL) systems poses a significant challenge. In this study, we present an innovative strategy utilizing the entropically driven self-assembly of amphiphilic phosphorescent platinum(II) complexes (L-Pt) with tetraethylene glycol chains, resulting in unique temperature dependencies. The entropically driven self-assembly of L-Pt leads to a synergistic improvement in phosphorescence emission efficiency (QY was amplified from 15 % at 25 °C to 53 % at 60 °C) and chirality, both in the ground state and the excited state (glum value has been magnified from 0.04×10-2 to 0.06) with increasing temperature. Notably, we observed reversible modulation of phosphorescence and chirality observed over at least 10 cycles through successive heating and cooling, highlighting the intelligent control of luminescence and chiroptical properties by regulating intermolecular interactions among neighboring L-Pt molecules. Importantly, the QY and glum of the L-Pt assembly in solid state were measured as 69 % and 0.16 respectively, representing relatively high values compared to most self-assembled CPL systems. This study marks the pioneering demonstration of dual thermo-enhancement of phosphorescence and CPL and provides valuable insights into the thermal effects on high-temperature and switchable CPL materials.

16.
J Nutr Biochem ; 127: 109603, 2024 May.
Article En | MEDLINE | ID: mdl-38373507

Alzheimer's disease (AD) is a common neurodegenerative disease that causes progressive cognitive decline. A major pathological characteristic of AD brain is the presence of senile plaques composed of ß-amyloid (Aß), the accumulation of which induces toxic cascades leading to synaptic dysfunction, neuronal apoptosis, and eventually cognitive decline. Dietary n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for patients with early-stage AD; however, the mechanisms are not completely understood. In this study, we investigated the effects of n-3 PUFAs on Aß-induced toxicity in a transgenic AD Caenorhabditis elegans (C. elegans) model. The results showed that EPA and DHA significantly inhibited Aß-induced paralytic phenotype and decreased the production of reactive oxygen species while reducing the levels of Aß in the AD worms. Further studies revealed that EPA and DHA might reduce the accumulation of Aß by restoring the activity of proteasome. Moreover, treating worms with peroxisome proliferator-activated receptor (PPAR)-γ inhibitor GW9662 prevented the inhibitory effects of n-3 PUFAs on Aß-induced paralytic phenotype and diminished the elevation of proteasomal activity by n-3 PUFAs, suggesting that PPARγ-mediated signals play important role in the protective effects of n-3 PUFAs against Aß-induced toxicity.


Alzheimer Disease , Fatty Acids, Omega-3 , Neurodegenerative Diseases , Animals , Alzheimer Disease/pathology , Amyloid beta-Peptides/toxicity , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Docosahexaenoic Acids/pharmacology , Eicosapentaenoic Acid/pharmacology , Fatty Acids, Omega-3/pharmacology , PPAR gamma/genetics , Disease Models, Animal
17.
Stem Cell Res Ther ; 15(1): 49, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38378684

BACKGROUND: Clinically, hormone replacement therapy (HRT) is the main treatment for primary ovarian insufficiency (POI). However, HRT may increase the risk of both breast cancer and cardiovascular disease. Exosomes derived from human umbilical cord mesenchymal stem cell (hUC-MSC) have been gradually applied to the therapy of a variety of diseases through inflammation inhibition, immune regulation, and tissue repair functions. However, the application and study of hUC-MSC exosomes in POI remain limited. METHODS: Here, we first constructed four rat animal models: the POI-C model (the "cyclophosphamide-induced" POI model via intraperitoneal injection), the POI-B model (the "busulfan-induced" POI model), the POI-U model (the "cyclophosphamide-induced" POI model under ultrasonic guidance), and MS model (the "maternal separation model"). Second, we compared the body weight, ovarian index, status, Rat Grimace Scale, complications, and mortality rate of different POI rat models. Finally, a transabdominal ultrasound-guided injection of hUC-MSC exosomes was performed, and its therapeuticy effects on the POI animal models were evaluated, including changes in hormone levels, oestrous cycles, ovarian apoptosis levels, and fertility. In addition, we performed RNA-seq to explore the possible mechanism of hUC-MSC exosomes function. RESULTS: Compared with the POI-C, POI-B, and MS animal models, the POI-U model showed less fluctuation in weight, a lower ovarian index, fewer complications, a lower mortality rate, and a higher model success rate. Second, we successfully identified hUC-MSCs and their exosomes, and performed ultrasound-guided intraovarian hUC-MSCs exosomes injection. Finally, we confirmed that the ultrasound-guided exosome injection (termed POI-e) effectively improved ovarian hormone levels, the oestrous cycle, ovarian function, and fertility. Mechanically, hUC-MSCs may play a therapeutic role by regulating ovarian immune and metabolic functions. CONCLUSIONS: In our study, we innovatively constructed an ultrasound-guided ovarian drug injection method to construct POI-U animal models and hUC-MSC exosomes injection. And we confirmed the therapeutic efficacy of hUC-MSC exosomes on the POI-U animal models. Our study will offer a better choice for new animal models of POI in the future and provides certain guidance for the hUC-MSCs exosome therapy in POI patients.


Exosomes , Primary Ovarian Insufficiency , Female , Rats , Humans , Animals , Primary Ovarian Insufficiency/diagnostic imaging , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/metabolism , Maternal Deprivation , Exosomes/metabolism , Cyclophosphamide , Disease Models, Animal , Ultrasonography, Interventional , Hormones/metabolism , Umbilical Cord
18.
J Biophotonics ; 17(5): e202300448, 2024 May.
Article En | MEDLINE | ID: mdl-38348528

Photobiomodulation (PBM) has attracted widespread attention in suppressing various pain and inflammation. Primary dysmenorrhea (PD) primarily occurs in adolescents and adult females, and the limited effectiveness and side effects of conventional treatments have highlighted the urgent need to develop and identify new adjunct therapeutic strategies. In this work, the results of pain and PGs demonstrated that 850 nm, 630 nm, and 460 nm all exhibited pain inhibition, decreased PGF2α and upregulated PGE2, while 630 nm PBM has better effectiveness. Then to explore the underlying biological mechanisms of red light PBM on PD, we irradiated prostaglandin-F2α induced HUSM cells and found that low-level irradiance can restore intracellular calcium ion, ROS, ATP, and MMP levels to normal levels. And, red light enhanced cell viability and promoted cell proliferation for normal HUSM cells. Therefore, this study proposes that red light PBM may be a promising approach for the future clinical treatment of PD.


Dinoprost , Dysmenorrhea , Low-Level Light Therapy , Dysmenorrhea/radiotherapy , Female , Dinoprost/analogs & derivatives , Dinoprost/metabolism , Humans , Cell Survival/radiation effects , Cell Proliferation/radiation effects , Reactive Oxygen Species/metabolism , Calcium/metabolism , Cell Line , Adenosine Triphosphate/metabolism
19.
Scand J Gastroenterol ; 59(5): 524-532, 2024 May.
Article En | MEDLINE | ID: mdl-38294208

BACKGROUND: Oxyntic gland neoplasm (OGN) is a rare subtype of gastric cancer. The aim of this study is to evaluate the prevalence, clinicopathological features, effectiveness and safety of endoscopic treatment, as well as the prognosis of OGN. METHODS: We retrospectively analyzed the data of patients pathologically diagnosed with OGN at our hospital from November 1, 2019 to May 1, 2023. RESULTS: A total of 36 patients with 45 lesions were identified, resulting in a disease frequency of 0.047% (36/76,832). The mean age was 55.0 ± 7.5 years, with a male-to-female ratio of about 1:1.12. Most lesions were ≤10 mm in size (84.4%), located in the upper third of the stomach (73.3%), exhibited slight elevation (75.5%), appeared whitish (55%), had dilated blood vessels on the surface (75.5%). 16 and 21 lesions were treated by precutting endoscopic mucosal resection (EMR-P) and endoscopic submucosal dissection (ESD), respectively. No significant differences were found between EMR-P and ESD in terms of en bloc resection rate (100% vs 100%, p = 1.000), complete resection rate (100% vs 90.5%, p = 0.495), and curative resection rate (93.8% vs 90.5%, p = 1.000). No complications such as bleeding and perforation were observed. No recurrence or metastasis was observed during the follow-up period. CONCLUSIONS: OGN is a rare tumor with unique clinical, endoscopic, and pathological characteristics. EMR-P and ESD are deemed safe and effective for treating OGNs. The relatively faster and easier EMR-P seems at least non-inferior to ESD, especially for removal of smaller OGNs. The overall prognosis is favorable.


Endoscopic Mucosal Resection , Stomach Neoplasms , Humans , Male , Female , Middle Aged , Retrospective Studies , Stomach Neoplasms/pathology , Stomach Neoplasms/surgery , Stomach Neoplasms/therapy , Stomach Neoplasms/epidemiology , Prevalence , Aged , Treatment Outcome , Adult , Prognosis , Gastroscopy , Gastric Mucosa/pathology , Gastric Mucosa/surgery , China/epidemiology
20.
Small ; : e2308684, 2024 Jan 04.
Article En | MEDLINE | ID: mdl-38174613

Porous carbon has been widely focused to solve the problems of low coulombic efficiency (ICE) and low multiplication capacity of Sodium-ion batteries (SIBs) anodes. The superior energy storage properties of two-dimensional(2D) carbon nanosheets can be realized by modulating the structure, but be limited by the carbon sources, making it challenging to obtain 2D structures with large surface area. In this work, a new method for forming carbon materials with high N/S doping content based on combustion activation using the dual activation effect of K2 SO4 /KNO3 is proposed. The synthesized carbon material as an anode for SIBs has a high reversible capacity of 344.44 mAh g-1 at 0.05 A g-1 . Even at the current density of 5 Ag-1 , the capacity remained at 143.08 mAh g-1 . And the ICE of sodium-ion in ether electrolytes is ≈2.5 times higher than that in ester electrolytes. The sodium storage mechanism of ether/ester-based electrolytes is further explored through ex-situ characterizations. The disparity in electrochemical performance can be ascribed to the discrepancy in kinetics, wherein ether-based electrolytes exhibit a higher rate of Na+ storage and shedding compared to ester-based electrolytes. This work suggests an effective way to develop doubly doped carbon anode materials for SIBs.

...